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BACKGROUND
Nonophthalmologist physicians do not confidently perform direct ophthalmos-
copy. The use of artificial intelligence to detect papilledema and other optic-disk 
abnormalities from fundus photographs has not been well studied.

METHODS
We trained, validated, and externally tested a deep-learning system to classify 
optic disks as being normal or having papilledema or other abnormalities from 
15,846 retrospectively collected ocular fundus photographs that had been obtained 
with pharmacologic pupillary dilation and various digital cameras in persons from 
multiple ethnic populations. Of these photographs, 14,341 from 19 sites in 11 
countries were used for training and validation, and 1505 photographs from 
5 other sites were used for external testing. Performance at classifying the optic-
disk appearance was evaluated by calculating the area under the receiver-operating-
characteristic curve (AUC), sensitivity, and specificity, as compared with a reference 
standard of clinical diagnoses by neuro-ophthalmologists.

RESULTS
The training and validation data sets from 6779 patients included 14,341 photo-
graphs: 9156 of normal disks, 2148 of disks with papilledema, and 3037 of disks 
with other abnormalities. The percentage classified as being normal ranged across 
sites from 9.8 to 100%; the percentage classified as having papilledema ranged 
across sites from zero to 59.5%. In the validation set, the system discriminated 
disks with papilledema from normal disks and disks with nonpapilledema abnor-
malities with an AUC of 0.99 (95% confidence interval [CI], 0.98 to 0.99) and 
normal from abnormal disks with an AUC of 0.99 (95% CI, 0.99 to 0.99). In the 
external-testing data set of 1505 photographs, the system had an AUC for the 
detection of papilledema of 0.96 (95% CI, 0.95 to 0.97), a sensitivity of 96.4% (95% 
CI, 93.9 to 98.3), and a specificity of 84.7% (95% CI, 82.3 to 87.1).

CONCLUSIONS
A deep-learning system using fundus photographs with pharmacologically dilated 
pupils differentiated among optic disks with papilledema, normal disks, and disks 
with nonpapilledema abnormalities. (Funded by the Singapore National Medical 
Research Council and the SingHealth Duke–NUS Ophthalmology and Visual Sci-
ences Academic Clinical Program.)

A BS TR AC T

Artificial Intelligence to Detect Papilledema 
from Ocular Fundus Photographs

D. Milea, R.P. Najjar, J. Zhubo, D. Ting, C. Vasseneix, X. Xu, M. Aghsaei Fard, 
P. Fonseca, K. Vanikieti, W.A. Lagrèze, C. La Morgia, C.Y. Cheung, S. Hamann, 

C. Chiquet, N. Sanda, H. Yang, L.J. Mejico, M.-B. Rougier, R. Kho, T. Thi Ha Chau, 
S. Singhal, P. Gohier, C. Clermont‑Vignal, C.-Y. Cheng, J.B. Jonas, P. Yu‑Wai‑Man, 

C.L. Fraser, J.J. Chen, S. Ambika, N.R. Miller, Y. Liu, N.J. Newman, T.Y. Wong, 
and V. Biousse, for the BONSAI Group*​​

Original Article



n engl j med﻿﻿  nejm.org﻿2

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

Examination of the optic nerves is a 
fundamental component of the clinical 
examination, but direct ophthalmoscopy 

is usually avoided or poorly performed by gen-
eral physicians and nonophthalmic specialists.1-4 
Detection of papilledema, defined as optic-nerve 
edema from intracranial hypertension, and the 
ability to determine that the optic disk is normal 
are valuable in the evaluation of patients with 
headache and other neurologic symptoms. The 
findings on ophthalmoscopy influence diagnos-
tic strategy and treatment options.3-13 Failure to 
detect papilledema may result in visual loss and 
neurologic complications.2-8,13

Digital ocular fundus photography has been 
used to obtain optic-disk images for the purpose 
of detecting papilledema and other optic-disk 
abnormalities in a variety of clinical settings, 
including emergency departments, urgent care 
centers, and neurologic and general adult and 
pediatric clinics.1,4,7,12,14-18 In one study conducted 
in an emergency department,12 8.5% of patients 
presenting with headache had abnormal findings 
on fundus photographs. However, these photo-
graphs need to be interpreted by physicians on-
site at the time of photography15 or sent through 
tele-ophthalmology platforms for assessment by 
ophthalmologists or other experts.17,19,20

Artificial intelligence and deep learning have 
been developed for the automated detection of 
diabetic retinopathy and glaucomatous optic 
neuropathy from ocular fundus photographs.21-30 
We investigated whether a deep-learning sys-
tem could aid in the diagnosis of optic-nerve 
abnormalities, particularly papilledema, from 
fundus photographs. We trained, validated, and 
externally tested a deep-learning system to 
identify and classify normal optic disks, disks 
with papilledema, and disks with other abnor-
malities from digital ocular fundus photographs 
collected from a large, international, multiethnic 
population.

Me thods

Study Design and Oversight

We conducted a training, validation, and exter-
nal-testing study on an artificial intelligence–
based deep-learning system using digital color 
ocular fundus photographs, retrospectively col-
lected by an international consortium (BONSAI: 

Brain and Optic Nerve Study with Artificial Intel-
ligence) composed of neuro-ophthalmologists. 
(For details on study group organization and 
participating centers, see Section S1 in the Sup-
plementary Appendix, available with the full text 
of this article at NEJM.org.)

We first trained and validated the deep-learn-
ing system using 14,341 fundus photographs ob-
tained at 19 sites in 11 countries; we then exter-
nally tested the system on 1505 photographs 
obtained at 5 other centers in 5 countries. The 
study was approved by the centralized institu-
tional review board of SingHealth, Singapore, and 
at each contributing institution and was con-
ducted in accordance with the principles of the 
Declaration of Helsinki. Informed consent was 
exempted, given the retrospective nature of the 
data collection and the use of deidentified ocu-
lar fundus photographs.

Image Acquisition

Retrospectively collected fundus photographs 
were obtained from one or both eyes after phar-
macologic pupillary dilation, with the use of 
various commercial digital fundus cameras. (For 
details on the cameras used in the study, see 
Section S2b and Table S1.) Images were centered 
on either the macula or the optic disk, but always 
including the optic disk, at various fields of view 
(subtending 20 to 45 degrees). Deidentified, un-
altered images (size, 0.5 to 2 megabytes per im-
age) were transferred to the Singapore Eye Re-
search Institute for inclusion in the study.

Study Patients

The study included patients with optic-nerve dis-
orders and healthy persons of multiple ethnic 
groups from 24 centers in 15 countries. The 
ocular fundus photographs, including those of 
normal optic nerves and a variety of common 
neuro-ophthalmic conditions affecting the optic 
nerves, were collected in each center by neuro-
ophthalmologists who routinely obtain fundus 
photographs and who had access to the patients’ 
medical records (principal investigators from each 
of these centers are authors of this article). In 
addition, photographs of normal optic disks 
were randomly selected from 3 centers, includ-
ing Indian, Asian, and non-Asian patients, which 
provided large sets of photographs of normal 
optic disks, as determined by general ophthal-
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mologists. (For patient characteristics, see Sec-
tion S2a, Fig. S1, and Table S2.)

Definition of Optic-Disk Abnormalities

Neuro-ophthalmologists provided a specific diag-
nosis, gathered retrospectively from medical rec
ords, for each fundus photograph at the time of 
clinical evaluation, considered for the purposes 
of this research to be the reference standard, on 
the basis of the appearance of the optic-nerve 
head as well as the medical evaluation, ancillary 
testing, and follow-up visits. All the patients seen 
by neuro-ophthalmologists underwent neuro-
ophthalmologic evaluations, including visual-field 
and other tests, in order to obtain a final clinical 
diagnosis pertaining to each photograph, accord-
ing to standard diagnostic criteria that could 
include brain imaging and lumbar puncture in 
some cases. (For details on the diagnostic pro-
cess and reference standards, see Section S2a.) 
Patients from the three centers that provided 
photographs of normal fundi also underwent 
comprehensive evaluations by ophthalmologists.

Fundus photographs were classified by the 
study steering committee into three groups, 
consistent with the original reference diagnosis: 
normal optic disk; disk with papilledema due to 
proven intracranial hypertension; and disk with 
other abnormalities, including other visible ab-
normalities of the optic-nerve head such as ante-
rior ischemic and inflammatory optic neuropa-
thies, optic-disk drusen, optic atrophy, and 
congenital optic-nerve abnormalities. Patients 
with normal optic nerves were included only in 
the absence of any ocular conditions such as 
substantial media opacities, retinal disorders, or 
glaucoma. These three groups were considered 
reference standards for training, validation, and 
external testing.

Development of the Deep-Learning 
Classification Model

Our system consisted of a segmentation network 
(U-Net) to detect the location of the optic disk 
from fundus photographs and a classification 
network (DenseNet) to classify the optic disk 
into one of the three classes: normal disk, disk 
with papilledema, and disk with other abnor-
malities. To visualize optic-nerve abnormalities, 
we used a class-activation map (Fig. S2). A five-
fold cross-validation was performed on the pri-

mary data set to differentiate among normal 
optic disks, disks with papilledema, and disks 
with other abnormalities (Fig. S3). With the use 
of the same thresholds as on the primary data 
set, the diagnostic performance of the three-class 
classification model was then assessed on the 
five independent external-testing data sets. (For 
details of the deep-learning system, see Section 
S2c, Fig. S4, and Table S3.23,24)

Statistical Analysis

To determine performance characteristics, we 
used the one-versus-rest strategy and calculated 
the area under the receiver-operating-character-
istic curve (AUC), sensitivity, specificity, and ac-
curacy for the following three cases according to 
the results of our classification model: normal 
as compared with abnormal optic disks (includ-
ing disks with papilledema and disks with other 
abnormalities), disks with papilledema as com-
pared with those without papilledema (including 
normal disks and disks with nonpapilledema 
abnormalities), and disks with nonpapilledema 
abnormalities as compared with normal disks 
and disks with papilledema. Predictive values for 
the classification of papilledema and other optic-
disk abnormalities were also calculated for each 
external-testing site. Bootstrapping was used to 
estimate 95% confidence intervals of the perfor-
mance metrics, with the patient as the resampling 
unit. (For details on statistical and bootstrapping 
procedures, see Section S2d.)

R esult s

Characteristics of the Data Sets

A total of 15,846 photographs (from 7532 patients 
[71.0% with photographs of both eyes, 17.6% 
with photographs of one eye, and 11.4% with 
repeat photographs during follow-up visits]; mean 
age, 48.6 years [range, 3 to 98]; 43.4% men or 
boys) were used to train, validate, and externally 
test the performance of the deep-learning sys-
tem, after the exclusion of 153 photographs be-
cause of poor quality or poor centration of the 
photograph, with the optic disk being cut off at 
the edge. (For details on the inclusion and exclu-
sion of photographs, see Section S2 and Fig. S1.)

The system was trained and validated on 
14,341 photographs collected from 6779 patients 
in the first 19 sites of the BONSAI consortium, 
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including 9156 images of normal optic disks, 
2148 of disks with confirmed papilledema from 
proven intracranial hypertension, and 3037 of 
disks with other abnormalities. The percentage 
of images classified as being normal ranged 
across data sets from 9.8 to 100%; the percent-
age classified as having papilledema ranged 
across data sets from zero to 59.5%. A separate 
set of 1505 photographs that were collected from 
5 other centers, including 613 images of normal 
disks, 360 of disks with papilledema, and 532 of 

disks with other abnormalities, was used for the 
external testing (Table 1).

Classification Performance in the Validation 
Data Set

In the validation data set, the system discrimi-
nated normal from abnormal optic disks (includ-
ing disks with papilledema and disks with other 
abnormalities) with an AUC of 0.99 (95% confi-
dence interval [CI], 0.99 to 0.99) and discrimi-
nated disks with papilledema from all other 

Table 1. Summary of Training, Validation, and External-Testing Data Sets, According to Diagnosis of Fundus Images.

Location of Center
Normal 
Disks

Disks with 
Papilledema

Disks with Other 
Abnormalities* Total

number of images

Primary training and validation data sets

Angers, France 116 369 701 1186

Atlanta, GA, United States 441 1146 340 1927

Baltimore, MD, United States 295 104 49 448

Bologna, Italy 43 13 264 320

Bordeaux, France 19 25 26 70

Chennai, India 169 124 423 716

Coimbra, Portugal 61 28 244 333

Geneva, Switzerland 66 15 59 140

Grenoble, France 130 6 78 214

Guangzhou, China 27 0 91 118

Hong Kong, China 722 16 316 1054

Lille, France 330 0 0 330

London, United Kingdom 234 40 159 433

Manila, Philippines 17 17 39 73

Nagpur, India 1911 0 0 1911

Paris, France 152 89 53 294

Singapore, Singapore 4053 42 83 4178

Sydney, Australia 351 86 95 532

Syracuse, NY, United States 19 28 17 64

External-testing data sets

Bangkok, Thailand 177 38 104 319

Copenhagen, Denmark 90 47 63 200

Freiburg, Germany 98 92 138 328

Rochester, MN, United States 92 95 97 284

Tehran, Iran 156 88 130 374

Total at all centers 9769 2508 3569 15,846

*	�Other optic-disk abnormalities included nonarteritic anterior ischemic optic neuropathy (760 images), anterior inflam-
matory optic neuritis (390), other causes of optic-disk swelling (164), optic-disk drusen (570), optic-disk congenital 
abnormalities (56), and optic atrophy (1629).
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optic disks (normal disks and disks with non-
papilledema abnormalities) with an AUC of 
0.99 (95% CI, 0.98 to 0.99), a sensitivity of 93.2% 
(95% CI, 91.8 to 94.5), and a specificity of 95.1% 
(95% CI, 94.7 to 95.6). The system also discrimi-
nated disks with nonpapilledema abnormalities 
from normal disks and disks with papilledema 
with an AUC of 0.97 (95% CI, 0.97 to 0.97) (Ta-
ble 2 and Fig. S3).

Classification Performance in the External-
Testing Data Sets

In the external-testing data sets, the AUCs were 
0.98 (95% CI, 0.97 to 0.98), 0.96 (95% CI, 0.95 to 
0.97), and 0.90 (95% CI, 0.88 to 0.92) for the 
classification of normal disks, disks with papill-
edema, and disks with other abnormalities, re-
spectively (Table  2 and Fig.  1). Across the five 
external-testing data sets, the AUCs ranged from 
0.96 to 0.99 for the discrimination of normal 
from abnormal optic disks and from 0.93 to 0.98 
for the discrimination of disks with papilledema 
from all other optic disks. (For details on the 
classification performance of the system on the 
individual external-testing data sets, see Table S4.)

The overall accuracies of our deep-learning 
system for the detection of normal disks, disks 
with papilledema, and disks with other abnor-
malities in the external-testing data sets were 
91.8% (95% CI, 90.3 to 93.3), 87.5% (95% CI, 
85.5 to 89.3), and 81.1% (95% CI, 78.8 to 83.3), 
respectively. In the five external-testing data sets, 
the trained system had an overall sensitivity and 
specificity of 96.4% (95% CI, 93.9 to 98.3) and 
84.7% (95% CI, 82.3 to 87.1), respectively, for the 
detection of papilledema (Table  2). The mean 
estimated prevalence of papilledema in all the 
sets of data was 9.5% (Table S6), which resulted 
in an overall positive predictive value of the sys-
tem for papilledema of 39.8% (95% CI, 36.6 to 
43.2) and a negative predictive value of 99.6% 
(95% CI, 99.2 to 99.7) (Table 3). (The predictive 
values of the deep-learning system across a full 
prevalence range for the detection of normal 
discs, discs with papilledema, and discs with 
other abnormalities are provided in Fig. S5.)

Adjudication of Classification Errors

In a post hoc analysis, four expert neuro-ophthal-
mologists who were not involved in the original 

Table 2. Classification Performance of the Deep-Learning System on the Primary Validation and External-Testing Data Sets.*

One-vs.-Rest Classification Total Normal Papilledema Other
AUC 

(95% CI)
Sensitivity 
(95% CI)

Specificity 
(95% CI)

Accuracy 
(95% CI)

number percent

Primary validation data set†

Normal vs. papilledema + other 14,341 9156 2148 3037 0.99 
(0.99–0.99)

93.5 
(92.9–94.1)

96.2 
(95.5–96.9)

94.5 
(94.0–94.9)

Papilledema vs. other + normal 14,341 9156 2148 3037 0.99 
(0.98–0.99)

93.2 
(91.8–94.5)

95.1 
(94.7–95.6)

94.8 
(94.4–95.3)

Other vs. normal + papilledema 14,341 9156 2148 3037 0.97 
(0.97–0.97)

93.0 
(91.9–94.0)

89.0 
(88.3–89.8)

89.8 
(89.2–90.5)

External-testing data set‡

Normal vs. papilledema + other 1,505 613 360 532 0.98 
(0.97–0.98)

86.6 
(83.8–89.3)

95.3 
(93.8–96.8)

91.8 
(90.3–93.3)

Papilledema vs. other + normal 1,505 613 360 532 0.96 
(0.95–0.97)

96.4 
(93.9–98.3)

84.7 
(82.3–87.1)

87.5 
(85.5–89.3)

Other vs. normal + papilledema 1,505 613 360 532 0.90 
(0.88–0.92)

85.7 
(82.5–88.8)

78.6 
(75.5–81.5)

81.1 
(78.8–83.3)

*	�“Normal” indicates normal optic disks, “papilledema” indicates disks with papilledema, and “other” indicates disks with nonpapilledema 
abnormalities. AUC denotes area under the receiver-operating-characteristic curve.

†	�The mean age of the patients included in the primary training and validation data set was 49.1 years (95% CI, 48.7 to 49.6), on the basis of 
94.5% of available patient demographic data. The male-to-female ratio in the primary training and validation data set was 0.79 (44.0% men 
or boys), on the basis of 94.4% of available patient demographic data.

‡	�The mean age of the patients included in the external-testing data set was 44.4 years (95% CI, 43.1 to 45.8), on the basis of 99.7% of avail-
able patient demographic data. The male-to-female ratio in the testing data set was 0.61 (38.0% men or boys), on the basis of 99.6% of 
available patient demographic data.
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analyses and who were unaware of the initial 
reference-standard classification reviewed the 
177 fundus photographs (11.8% of the 1505 
photographs) in the external-testing data sets 
that had discordant findings between the refer-
ence standard by site expert neuro-ophthalmol-
ogists and the classification by the deep-learn-
ing system. This analysis showed that of the 360 
disks with papilledema, 15 (4.2%) were misclas-
sified by the system as disks with other abnor-
malities but never as normal optic disks. (For 
details on the 177 misclassified fundus photo-
graphs, see Sections S3a and S3b and Fig. S6A 
through S6C.) A review by the same neuro-oph-
thalmologists of the misclassified papilledema 
images at a patient level (i.e., both eyes of a pa-
tient viewed as a pair) disclosed only one patient 
with papilledema in both eyes missed by the 
system in the external-testing data sets. In 10 of 
the 177 fundus photographs for which the sys-
tem provided a classification that differed from 
the reference standard, the four neuro-ophthal-

mologists, after review of the fundus photo-
graphs, agreed with the deep-learning system.

Subsequently, arbitration was performed by 
contacting the neuro-ophthalmologists at the 
applicable external-testing sites and requesting 
that they reevaluate their initial reference-stan-
dard diagnosis. In these 10 discordant cases, the 
classification of the deep-learning system was 
considered accurate, and the discrepancies were 
found to be the result of labeling errors by the 
site investigators. We performed a post hoc re-
analysis of the corrected external-testing data 
set with the 10 reclassified images, which re-
sulted in a slightly improved average AUC for the 
overall classification performance of the system, 
from 0.941 to 0.948. Subsequently, we requested 
that the neuro-ophthalmologists at each of the 
five centers used for the external-testing data 
sets recheck all diagnoses in their respective 
series of patients; this led to the identification of 
an additional 3 mislabeled photographs. How-
ever, all 3 remained in the category of disks with 

Figure 1. Performance of the Deep-Learning System for the Detection of Normal Disks and Disks with Papilledema 
in the External-Testing Data Sets.

The external-testing data sets included ocular fundus photographs from five centers with diverse ethnic back-
grounds. As shown in Panel A, the deep-learning system discriminated normal optic disks from abnormal ones, 
with areas of the receiver-operating-characteristic curve (AUCs) that ranged from 0.96 to 0.99 and an overall AUC  
of 0.98 (95% CI, 0.97 to 0.98). As shown in Panel B, the deep-learning system discriminated disks with papilledema 
from normal disks and disks with nonpapilledema abnormalities, with AUCs that ranged from 0.93 to 0.98 and an 
overall AUC of 0.96 (95% CI, 0.95 to 0.97).
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nonpapilledema abnormalities and therefore did 
not change our results.

Discussion

Our objective was to assess the performance of 
a deep-learning system to detect papilledema 
from fundus images taken at many international 
centers, from patients with a variety of ethnic 
backgrounds, types of fundus pigmentation, and 
ages and using a variety of commercially avail-
able digital fundus cameras. Our main finding 
was that an artificial-intelligence algorithm us-
ing deep-learning neural networks could dis-
criminate among normal optic disks, disks with 
papilledema, and disks with other abnormali-
ties. In our external-testing data sets, the sensi-
tivity for detecting papilledema was 96.4% and 
the specificity was 84.7%. Negative predictive 
values were high, but positive predictive values 

were lower and varied considerably depending on 
the prevalence of papilledema and other optic-
nerve conditions.

Several studies have suggested that direct 
ophthalmoscopy can be replaced by more user-
friendly ocular fundus digital cameras that pro-
vide high-quality photographs of the optic nerve 
and retina, even without pharmacologic dilation 
of the pupils,1,2,4,15,17,31,32 although our study used 
photographs taken after pupillary dilation. Most 
deep-learning research in ophthalmology has 
been for screening of retinal disorders and glau-
coma.24-30,33-35 Previous studies using fewer images 
than ours showed that deep-learning systems 
could recognize right from left optic disks in the 
presence of optic-nerve abnormalities on fundus 
photographs,36 could discriminate disks with 
papilledema from normal disks with an average 
accuracy of 93% (similar to the value in our 
study),37 and could differentiate true optic-disk 

Table 3. Predictive Values of the Deep-Learning System in the External-Testing Data Sets.*

Center and Ophthalmic Condition
Estimated 
Prevalence

Positive Predictive Value 
(95% CI)

Negative Predictive Value 
(95% CI)

percent

Bangkok, Thailand

Papilledema 8.9 37.2 (30.9–43.9) 99.4 (97.7–99.8)

Other optic-disk abnormalities 63.3 89.7 (86.3–92.2) 72.7 (63.8–80.0)

Copenhagen, Denmark

Papilledema 3.6 26.3 (18.3–36.2) 100 (100–100)

Other optic-disk abnormalities 14.3 33.4 (27.8–39.4) 98.1 (95.7–99.2)

Freiburg, Germany

Papilledema 10.0 34.6 (29.2–40.5) 99.9 (98.9–100)

Other optic-disk abnormalities 40.0 78.6 (72.4–83.7) 90.6 (86.2–93.7)

Rochester, MN, United States

Papilledema 17.2 55.9 (47.7–63.8) 99.2 (97.7–99.8)

Other optic-disk abnormalities 32.8 62.5 (56.8–67.8) 96.6 (92.4–98.5)

Tehran, Iran

Papilledema 8.0 32.8 (27.1–38.9) 99.2 (98.3–99.6)

Other optic-disk abnormalities 32.0 60.6 (54.7–66.2) 87.9 (84.0–100)

All centers

Papilledema 9.5 39.8 (36.6–43.2) 99.6 (99.2–99.7)

Other optic-disk abnormalities 36.5 69.7 (67.0–72.3) 90.5 (88.6–92.2)

*	�We calculated predictive values using the sensitivity and specificity of the deep-learning system in the five individual 
external-testing data sets and overall, after taking into account the estimated prevalence of papilledema and other 
optic-disk abnormalities at each site. (For details on the calculation of predictive values, see Section S2d in the 
Supplementary Appendix.)
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swelling from pseudo-swelling with an accuracy 
of approximately 95%.38

Our study has limitations. First, it was retro-
spective, since the photographs were collected 
retrospectively over a period of several years from 
a large number of centers. This resulted in an 
imbalance in class distribution among groups (i.e., 
differing prevalence of different optic-disk con-
ditions), a mix of consecutive series of patients 
and convenience samples, and labeling errors.

Second, we chose as a reference standard the 
final diagnosis of the appearance of the normal 
optic-nerve head given by an expert neuro-ophthal-
mologist at each center, based on the clinical 
examination and other findings, including brain 
imaging and lumbar puncture when appropriate 
for patients with suspected papilledema and fol-
low-up data. The final diagnosis of the appear-
ance of the optic-nerve head in healthy persons 
was determined by neuro-ophthalmologists or 
ophthalmologists, on the basis of comprehensive 
ophthalmologic evaluations. A total of 10 label-
ing errors by the investigators were discovered 
and correctly identified by our deep-learning 
system. Relabeling the 10 of 1505 images in the 
external-testing data set improved the overall 
performance of the deep-learning system only 
slightly. Although our deep-learning system mis-
classified 15 of 360 photographs of disks with 

papilledema (4.2%), it labeled them as disks with 
other abnormalities and never as normal disks.

Third, the abnormal photographs were ob-
tained after pharmacologic dilation of the pupils 
and may not reflect general practice. Fourth, our 
network was trained and calibrated primarily to 
identify normal optic nerves and those with pap-
illedema. Therefore, the threshold for diagnosing 
papilledema was low, in order to avoid false 
negatives. Whether the results will be reproduc-
ible under other circumstances is not known.

We found that an artificial-intelligence, deep-
learning algorithm that was trained on ocular 
fundus photographs had high sensitivity and spec-
ificity for discriminating between papilledema and 
normal optic nerves. Negative predictive values 
were high, but positive predictive values varied 
depending on the prevalence of papilledema in 
the population being studied. Further investiga-
tion is required in order to prospectively validate 
the use of deep-learning systems in various set-
tings, which may have different prevalences of 
optic-disk abnormalities from those in our study.39
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